# Subset the dataset to include only the 'deficit' and 'crs' (coordinate reference system)
subset = wsim_gldas[["deficit", "crs"]]
subset
<xarray.Dataset> Size: 3GB Dimensions: (time: 793, lat: 600, lon: 1440) Coordinates: (3) Data variables: (2) Attributes: (5)
xarray.Dataset
- time: 793
- lat: 600
- lon: 1440
- lon(lon)float64-179.9 -179.6 ... 179.6 179.9
- units :
- degrees_east
- long_name :
- Longitude
- axis :
- X
- standard_name :
- longitude
array([-179.875, -179.625, -179.375, ..., 179.375, 179.625, 179.875])
- lat(lat)float6489.88 89.62 89.38 ... -59.62 -59.88
- units :
- degrees_north
- long_name :
- Latitude
- axis :
- Y
- standard_name :
- latitude
array([ 89.875, 89.625, 89.375, ..., -59.375, -59.625, -59.875])
- time(time)datetime64[ns]1948-12-01 ... 2014-12-01
array(['1948-12-01T00:00:00.000000000', '1949-01-01T00:00:00.000000000', '1949-02-01T00:00:00.000000000', ..., '2014-10-01T00:00:00.000000000', '2014-11-01T00:00:00.000000000', '2014-12-01T00:00:00.000000000'], dtype='datetime64[ns]')
- deficit(time, lat, lon)float32...
- long_name :
- Composite Deficit Index
- grid_mapping :
- crs
[685152000 values with dtype=float32]
- crs(time)int32...
- grid_mapping_name :
- latitude_longitude
- longitude_of_prime_meridian :
- 0
- semi_major_axis :
- 6378137
- inverse_flattening :
- 298.257223563
- spatial_ref :
- GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]
[793 values with dtype=int32]
- lonPandasIndex
PandasIndex(Index([-179.875, -179.625, -179.375, -179.125, -178.875, -178.625, -178.375, -178.125, -177.875, -177.625, ... 177.625, 177.875, 178.125, 178.375, 178.625, 178.875, 179.125, 179.375, 179.625, 179.875], dtype='float64', name='lon', length=1440))
- latPandasIndex
PandasIndex(Index([ 89.875, 89.625, 89.375, 89.125, 88.875, 88.625, 88.375, 88.125, 87.875, 87.625, ... -57.625, -57.875, -58.125, -58.375, -58.625, -58.875, -59.125, -59.375, -59.625, -59.875], dtype='float64', name='lat', length=600))
- timePandasIndex
PandasIndex(DatetimeIndex(['1948-12-01', '1949-01-01', '1949-02-01', '1949-03-01', '1949-04-01', '1949-05-01', '1949-06-01', '1949-07-01', '1949-08-01', '1949-09-01', ... '2014-03-01', '2014-04-01', '2014-05-01', '2014-06-01', '2014-07-01', '2014-08-01', '2014-09-01', '2014-10-01', '2014-11-01', '2014-12-01'], dtype='datetime64[ns]', name='time', length=793, freq=None))
- date_created :
- 2021-03-24T22:39:08+0000
- Conventions :
- CF-1.6
- Title :
- Water Security Indicator Model -- Global Land Data Assimilation System Data Set (WSIM-GLDAS), version 1.0: Monthly Grids
- Institution :
- NASA Socioeconomic Data and Applications Center (SEDAC), Center for International Earth Science Information Network (CIESIN) Columbia University
- References :
- Crowley, C., Baston, D., Brinks, J. 2020. Water Security Indicator Model -- Global Land Data Assimilation System Data Set (WSIM-GLDAS), version 1.0: Monthly Grids. Palisades, NY: NASA Socioeconomic Data and Applications Center.